

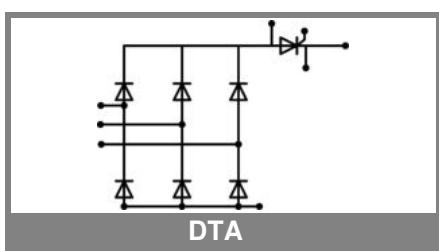
SEMITOP® 3

3-phase bridge rectifier+
series thyristor

SK 30 DTA

Target Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
- Reverse voltage up to 1600 V
- High surge currents

Typical Applications*

- Soft starters
- Light control
- Temperature control

V_{RSM}	V_{RRM}, V_{DRM}	$I_D = 25 \text{ A}$ ($T_s = 80^\circ\text{C}$)
V	V	SK 30 DTA 08
900	800	SK 30 DTA 12
1300	1200	SK 30 DTA 16
1700	1600	

Characteristics		$T_s = 25^\circ\text{C}$ unless otherwise specified	
Symbol	Conditions	Values	Units
I_D	$T_s = 80^\circ\text{C}$; Ind. load	25	A
I_{TAV}	sin. 180°; $T_s = 25$ (80°C) per thyristor	31 (19)	A
I_{FAV}	sin. 180°; $T_s = 25$ (80°C) per diode	37 (25)	A
I_{TSM}/I_{FSM}	$T_{vj} = 25$ (125°C); 10 ms	1000 (900)	A
I^2t	$T_{vj} = 25$ (125°C); 8,3 ... 10 ms	5000 (4000)	A ² s
T_{stg}		-40,...+125	°C
T_{solder}	terminals, 10 s	260	°C
Thyristor			
$(dv/dt)_{cr}$	$T_{vj} = 125^\circ\text{C}$	1000	V/μs
$(di/dt)_{cr}$	$T_{vj} = 125^\circ\text{C}$; $f = f = 50 \dots 60 \text{ Hz}$	50	A/μs
t_q	$T_{vj} = 125^\circ\text{C}$; typ.	80	μs
I_H	$T_{vj} = 25^\circ\text{C}$; typ. / max.	100 / 200	mA
I_L	$T_{vj} = 25^\circ\text{C}$; $R_G = 33 \Omega$; typ. / max.	200 / 400	mA
V_T	$T_{vj} = 25^\circ\text{C}$; ($I_T = 120 \text{ A}$); max.	1,8	V
$V_{T(TO)}$	$T_{vj} = 125^\circ\text{C}$	max. 1	V
r_T	$T_{vj} = 125^\circ\text{C}$	max. 6	mΩ
$I_{DD}; I_{RD}$	$T_{vj} = 125^\circ\text{C}$; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 8	mA
$R_{th(j-s)}$	Cont. per thyristor	0,8	K/W
T_{vj}		-40 ... +125	°C
V_{GT}	$T_{vj} = 25^\circ\text{C}$; d.c.	2	V
I_{GT}	$T_{vj} = 25^\circ\text{C}$; d.c.	100	mA
V_{GD}	$T_{vj} = 125^\circ\text{C}$; d.c.	0,25	V
I_{GD}	$T_{vj} = 125^\circ\text{C}$; d.c.	5	mA
Diode			
V_F	$T_{vj} = 25^\circ\text{C}$; ($I_F = 25 \text{ A}$); max.	1,25	V
$V_{(TO)}$	$T_{vj} = 150^\circ\text{C}$	0,8	V
r_T	$T_{vj} = 150^\circ\text{C}$	4	mΩ
I_{RD}	$T_{vj} = 150^\circ\text{C}$; $V_{RD} = V_{RRM}$	4	mA
$R_{th(j-s)}$	per diode	1,7	K/W
T_{vj}		-40...+150	°C
Mechanical data			
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min	3000 (2500)	V
M_1	mounting torque	2,5	Nm
w		30	g
Case	SEMITOP® 3	T 45	

SK 30 DTA

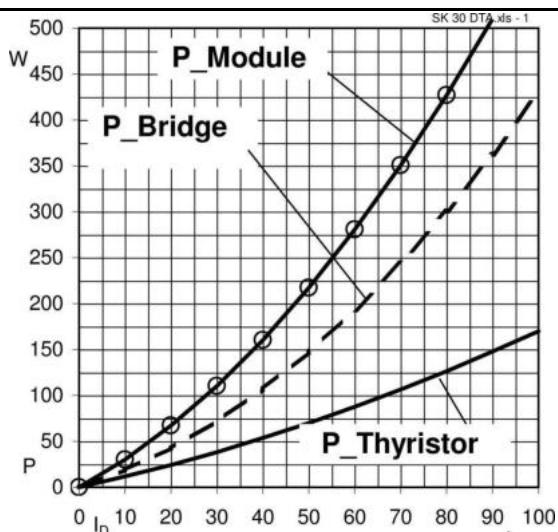


Fig. 1 Power dissipation per module vs. output bridge current

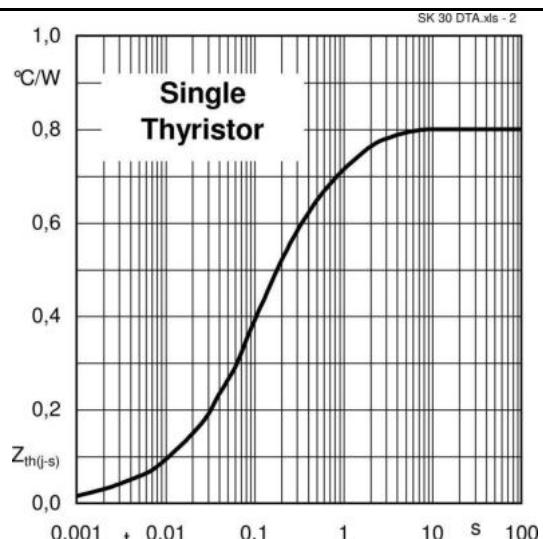


Fig. 2 Transient thermal impedance vs time

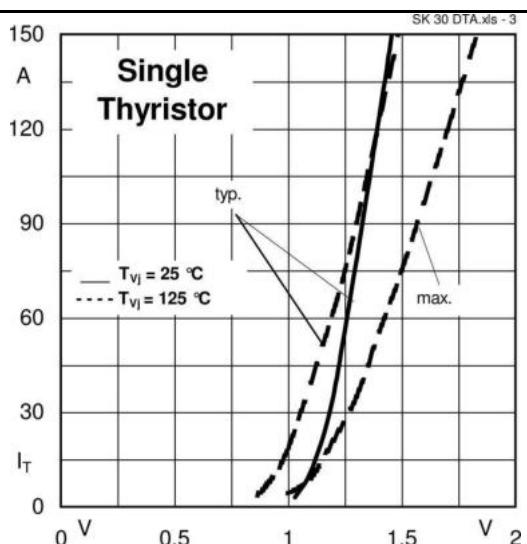


Fig. 3a Thyristor On-state characteristics

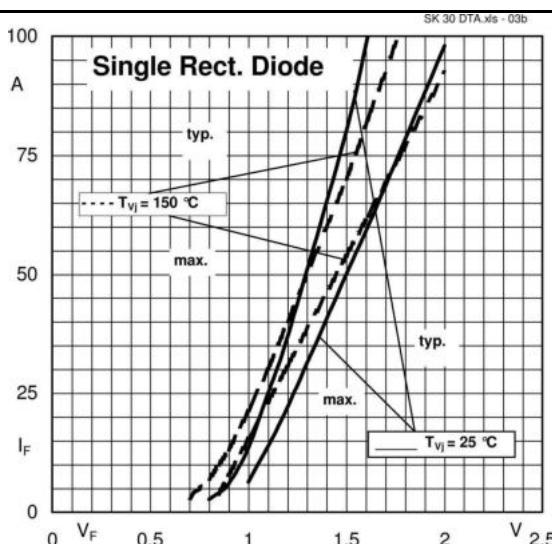


Fig. 3b Rect. Diode On-state characteristics

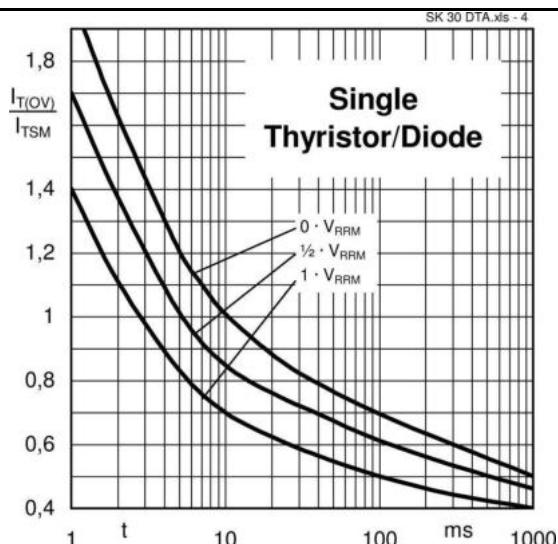
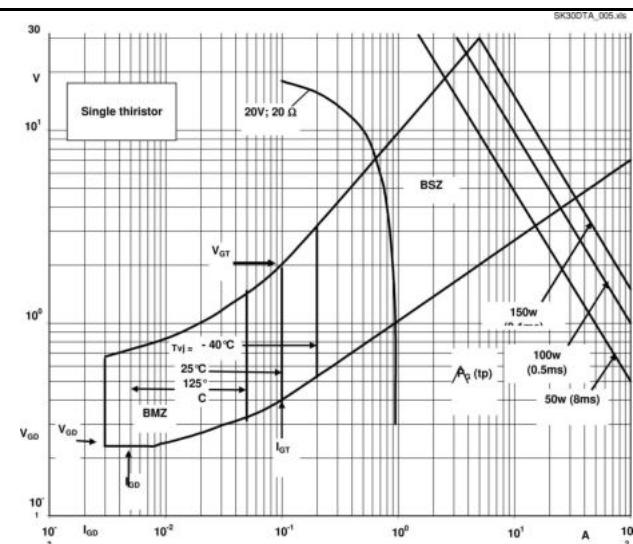
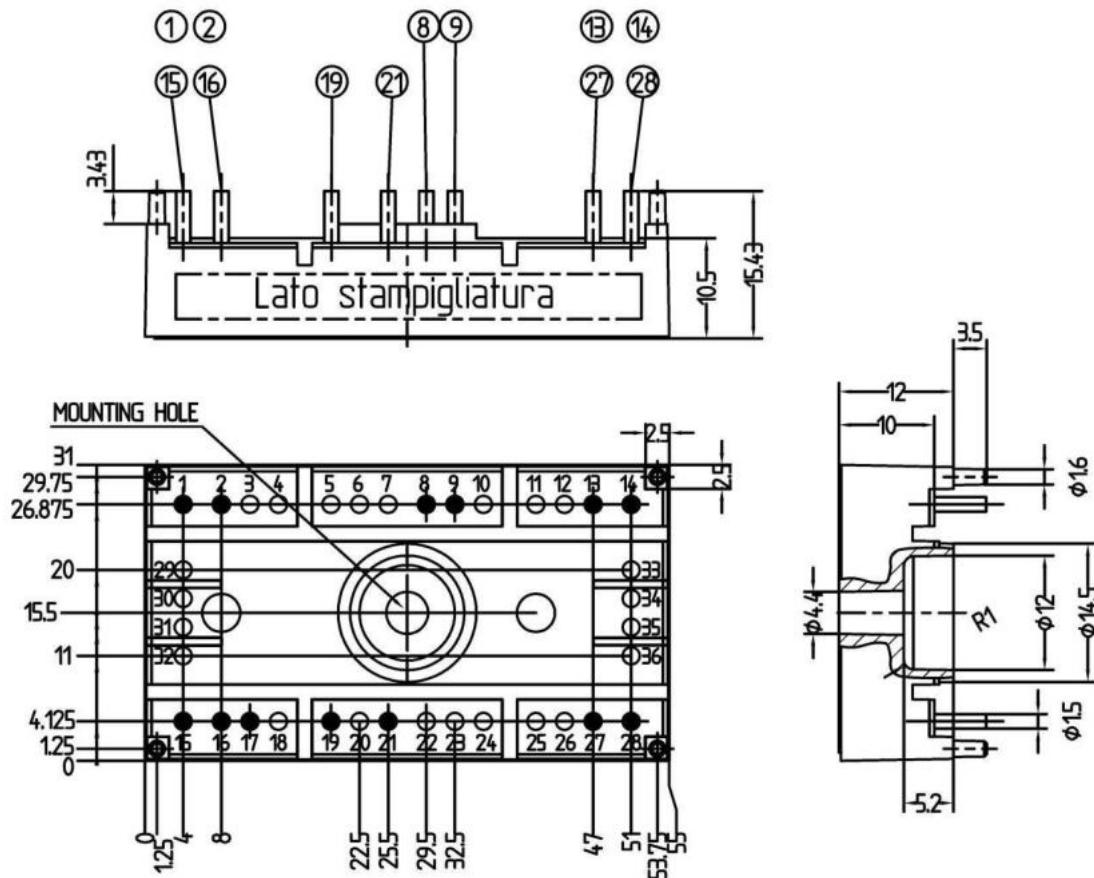
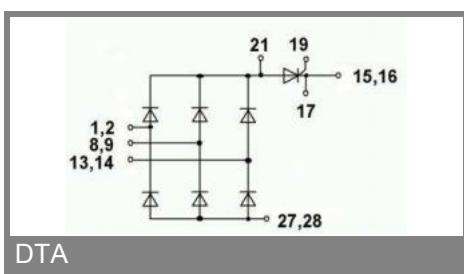


Fig. 4 Surge overload current vs. time


Fig. 5 Gate trigger characteristics

Dimensions in mm

SUGGESTED HOLEDIAMETER FOR THE SOLDER PINS AND THE MOUNTING PINS IN THE PCB: 2 mm

Case T45 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

